Novel Agent Nitidine Chloride Induces Erythroid Differentiation and Apoptosis in CML Cells through c-Myc-miRNAs Axis

نویسندگان

  • Na Liu
  • Peng Li
  • Shaolei Zang
  • Qiang Liu
  • Daoxin Ma
  • Xiulian Sun
  • Chunyan Ji
چکیده

The proto-oncogene c-Myc plays critical roles in human malignancies including chronic myeloid leukemia (CML), suggesting that the discovery of specific agents targeting c-Myc would be extremely valuable for CML treatment. Nitidine Chloride (NC), a natural bioactive alkaloid, is suggested to possess anti-tumor effects. However, the function of NC in leukemia and the underlying molecular mechanisms have not been established. In this study, we found that NC induced erythroid differentiation, accompanied by increased expression of erythroid differentiation markers, e. g. α-, ε-, γ-globin, CD235a, CD71 and α-hemoglobin stabilizing protein (AHSP) in CML cells. We also observed that NC induced apoptosis and upregulated cleaved caspase-3 and Parp-1 in K562 cells. These effects were associated with concomitant attenuation of c-Myc. Our study showed that NC treatment in CML cells enhanced phosphorylation of Thr58 residue and subsequently accelerated degradation of c-Myc. A specific group of miRNAs, which had been reported to be activated by c-Myc, mediated biological functions of c-Myc. We found that most of these miRNAs, especially miR-17 and miR-20a showed strong decrement after NC treatment or c-Myc interference. Furthermore, overexpression of c-Myc or miR-17/20a alleviated NC induced differentiation and apoptosis in K562 cells. More importantly, NC enhanced the effects of imatinib in K562 and primary CML cells. We further found that even imatinib resistant CML cell line (K562/G01) and CML primary cells exhibited high sensitivity to NC, which showed potential possibility to overcome imatinib resistance. Taken together, our results clearly suggested that NC promoted erythroid differentiation and apoptosis through c-Myc-miRNAs regulatory axis, providing potential possibility to overcome imatinib resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-451 Up-regulation, Induce Erythroid Differentiation of CD133+cells Independent of Cytokine Cocktails

  Objective(s): Erythropoiesis is regulated by some extrinsic and intrinsic factors as microRNAs (miRNAs). miRNAs are endogenously small non-coding regulatory RNAs which play vital roles in the variety of cellular fate, critical processes; growth, apoptosis, metabolism, survival of the cells and specially differentiation. Several miRNAs such as miR-16 and miR-451 have been shown to be correlate...

متن کامل

Key Regulatory Gene Expression in Erythroleukemia Differentiation

The characteristics of cellular and molecular mechanisms associated with cell proliferation and differentiation is important to understand malignancy. In this report we characterise a leukemic model, D5A1, to study the action of differentiation agent, cellular events and gene expression of the selected transcription factors. Cells induced with 4 mM hexamethylene bisacetamide (HMBA) caused signs...

متن کامل

MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors.

MicroRNAs (miRNAs) are key regulators of hematopoietic cell differentiation and may contribute to altered growth of leukemic stem cells. Using microarray-based miRNA profiling, we found that miRNA 486 (miR-486) is significantly upregulated in chronic myeloid leukemia (CML) compared with normal CD34(+) cells, particularly in the megakaryocyte-erythroid progenitor population. miR-486-5p expressio...

متن کامل

بررسی تاثیر مهار mir-150 بر بیان زنجیره  آلفای هموگلوبین در رده سلولیK562.

Background and Aim: MicroRNAs (miRNA) are small noncoding RNA molecules that transcribed by RNA polymerase II. After biogenesis, these molecules act by incorporation into the RNA-induced silencing complex (RISC). MiRNAs are involved in multiple physiological and pathological processes such as proliferation, differentiation, apoptosis and cancer. Recently several studies reported down regulation...

متن کامل

Effect of valproic acid on JAK/STAT pathway, SOCS1, SOCS3, Bcl-xL, c-Myc, and Mcl-1 gene expression, cell growth inhibition and apoptosis induction in human colon cancer HT29 cell line.

Background and aim: Cytokines are a large family of protein messengers. These proteins induce various cellular responses. Janus kinases (JAKs) are mediators of cytokine, activated JAKs phosphorylate signal transducers, and activators of transcription (STAT) proteins that regulate cell differentiation, proliferation, and apoptosis. Aberrant JAK/STAT signaling is involved in the oncogenesis of se...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015